Advancement of the Green Energy: Foundational Research of Solar Fuel Technologies for Sustainable Production and Advanced Storage

Targeted Funding Program (TFP)
2023 - 2025
About the program
Relevance

The Targeted Funding Program (TFP) is a strategic national initiative aimed at accelerating Kazakhstan's transition to green energy. It directly contributes to the United Nations Sustainable Development Goals:

  • Goal 7: Affordable and Clean Energy – increasing the global share of renewable energy
  • Goal 13: Climate Action – promoting decarbonization and sustainable technologies

Kazakhstan's abundant solar radiation and commitment to carbon neutrality by 2060 (as outlined in the Kazakhstan-2050 strategy) make it an ideal environment for advancing solar hydrogen technologies.

Goals

The main objective of the program is to investigate and develop novel materials and systems for:

  • Renewable energy (hydrogen) generation through photocatalytic water splitting
  • Efficient and compact solid-state hydrogen gas storage
  • Clean production of ammonia
Expected Results

By the end of the program, we aim to achieve:

  • Efficient heterostructured photocatalysts via internal electric field engineering
  • High-performance semiconductors with tunable bandgaps
  • Upconversion systems for capturing IR and converting to visible/UV light
  • Composite alanate and titanium-based hydrides with improved storage capacity and release kinetics
  • Green catalysts for ammonia synthesis
Achievements (as of 2024)
  • Developed electrochemical synthesis of Bi2S3 with record photocurrent among pure materials
  • Demonstrated influence of p-n junctions in ZnO/Co3O4 photocatalysts on charge separation
  • Synthesized CuBi2O4 and CuFeO2 thin films via pulsed electrochemical deposition with tunable metal ratios enabling control over Fermi level and formation of homojunctions
  • Produced composite alanates with carbon nanotubes to enhance hydrogen sorption
  • Surface-modified titanium alloys for reduced oxidation and enhanced hydrogen uptake
  • Demonstrated IR-to-visible upconversion to improve solar utilization efficiency
Research directions
Hydrogen Production

(1) Photocatalytic water splitting using advanced semiconductors

(2) Study of internal electric fields and charge separation

Hydrogen Storage
(3) Development of solid-state systems using alanates and Ti-based alloys
(4) Encapsulation in MOF/CNT frameworks for improved kinetics and safety
Ammonia Fuel
(5) Green ammonia synthesis via photocatalytic nitrogen reduction under ambient conditions.
(6) Employs doping and surface functionalization to boost selectivity and efficiency.
(7) Enhances nitrogen adsorption and activation for efficient NH3 production.

Consortium
Lead Institution
Collaborating Institutions

Research group
  • Nurxat Nuraje
    Professor, Principal Investigator
    ORCID: 0000-0002-4335-8905
    Researcher ID: ACQ-7356-2022
    Scopus ID: 8672602200
  • Dr. Vladislav Kudryashov
    Senior Researcher, NLA
    Scopus ID: 57196782106
    Researcher ID: C-1411-2015
    ORCID: 0000-0002-5667-611X
  • Dr. Khadichakhan Rafikova
    Associate Professor, Satbayev University
    Scopus ID: 56050765000
    ORCID: 0000-0001-8028-2244
    ResearcherID: AAF-5319-2019
  • Dr. Olzat Toktarbaiuly
    Senior Researcher, NLA
    Scopus Author ID: 55509723300,
    ORCID: 0000-0003-4594-3435
    ResearcherID: ADV-5698-2022
  • Dr. Aitkazy Kaisha
    Senior Researcher, NLA
    Scopus Author ID: 57210920713,
    ORCID ID: 0000-0001-7203-9842
    ResearcherID: AGM-0096-2022
  • Dr. Yerbolat Magazov
    Researcher, NLA
    Scopus ID: 59227515200
    ORCID: 0000-0002-0902-3140
    Researcher ID: AAW-7243-2020
  • Dr. Dana Kanzhigitova
    Researcher, NLA
    ORCID: 0000-0003-3445-584X
    Researcher ID: ABG-4327-2021
    Scopus ID: 57827998200
  • Dr. Guldana Zhigerbayeva
    Researcher, NLA
    Scopus ID: 57828130900
    ORCID: 0000-0001-8556-4865
    Researcher ID: IYJ-5518-2023
  • Aliya Kurbanova
    Junior Researcher, Nazarbayev University
    Scopus ID: 57208865374
    ORCID: 0000-0002-1261-4582
    Researcher ID: JGZ-7602-2023
  • Magzhan Amze
    Junior Researcher, NLA
    Scopus ID: 57439684700
    ORCID: 0000-0003-4075-1522
    Researcher ID: KAU-8542-2024
  • Azat Mahmet
    Junior Researcher, NLA
  • Arshyn Zhengis
    Junior Researcher, NLA
  • Zhanat Azhikhanova
    Junior Researcher, NLA
  • Raushan Soltan
    Research Assistant, NLA
  • Botakoz Suleimenova
    Research Assistant, NLA
  • Aigerim Ospanova
    Research Assistant, NLA
  • Madina Kalibek
    Research Assistant, NLA
  • Talgat Orazbek
    Research Assistant, NLA

Publications
  1. Magazov, Y., Kudryashov, V., Moldabekov, K., Amze, M., Nurmanova, A., Aliyev, A., & Nuraje, N. (2024). Copper oxide coupled with photon upconversion for solar water splitting. Communications Materials, 5(1), 126. https://doi.org/10.1038/s43246-024-00574-5
  2. Magazov, Y., Aliyev, A., Moldabekov, K., Kurbanova, A., Rakymbekova, A., Amze, M., Ibrayev, N. & Kudryashov, V. (2024). Photoelectrochemical water splitting using Cu2O-based photocathode – A review. ES Energy & Environment, 26, 1347. https://doi.org/10.30919/esee1347
  3. Qi H, Tong Y, Wang Y, et al. Strongly Anchored Dion–Jacobson Perovskite for Efficient Blue Light-Emitting Diodes. Nano Lett. 2025;25(1):353-360. https://doi.org/10.1021/acs.nanolett.4c05124
  4. Adotey E, Kurbanova A, Ospanova A, et al. Development of Superhydrophobic Reduced Graphene Oxide (rGO) for Potential Applications in Advanced Materials. Nanomaterials. 2025;15(5). https://doi.org/10.3390/nano15050363
  5. Kaisha A, Toktarbaiuly O, Ainabayev A, et al. Role of Invisible Oxygen in the Trilayer Laminates of Ultrathin a-IGZO/SiOx/a-IGZO Films. ACS Appl Electron Mater. https://doi.org/10.1021/acsaelm.5c00433
  6. Kalibek MR, Ospanova AD, Suleimenova B, et al. Solid-state hydrogen storage materials. Discover Nano. 2024;19(1). https://doi.org/10.1186/s11671-024-04137-y
  7. Suiindik Z, Adotey E, Kydyrbay N, Zhazitov M, Nuraje N, Toktarbaiuly O. Formulating Superhydrophobic Coatings with Silane for Microfiber Applications. Eurasian Chemico-Technological Journal. 2024;26(2):53-60. https://doi.org/10.18321/ectj1607
  8. Kydyrbay N, Adotey E, Zhazitov M, et al. Enhancing Road Durability and Safety: A Study on Silica-Based Superhydrophobic Coating for Cement Surfaces in Road Construction. Engineered Science. https://doi.org/10.30919/es1221
  9. NKh I, YZh T. ENHANCEMENT OF POWER CONVERSION EFFICIENCY OF DYE-SENSITIZED SOLAR CELLS VIA INCORPORATION OF GAN SEMICONDUCTOR MATERIAL SYNTHESIZED IN HOT-WALL CHEMICAL VAPOR DEPOSITION FURNACE. Eurasian Physical Technical Journal. 2024;21(50). https://doi.org/10.31489/2024No3/131-139
  10. Ardakkyzy A, Nuraje N, Toktarbay Zh. Effects of Electrospinning Parameters on the Morphology of Electrospun Fibers. Eurasian Chemico-Technological Journal. 2024;26(3):105-111. https://doi.org/10.18321/ectj1634
  11. Imekova G, Karimov D, Nuraje N, Toktarbay Z. Polymerization Dynamics of Zwitterionic Monomers with Polyacrylamide for Enhanced Oil Recovery. Engineered Science. 2024;31. https://doi.org/10.30919/es1260
  12. Ospanova A, Kassym K, Kanzhigitova D, et al. Selective Separation of Thiophene Derivatives Using Metal–Organic Frameworks-Based Membranes. ACS Omega. https://doi.org/10.1021/acsomega.4c05506
  13. Yeszhan Y, Duisenbekov S, Kurmangaliyeva D, et al. Enhanced electrochemical performance of a polyaniline-based supercapacitor by a bicontinuous microemulsion nanoreactor approach. RSC Adv. 2025;15(2):1205-1211. https://doi.org/10.1039/D4RA07348G
  14. Amrenova Y, Zhengis A, Yergesheva A, Abutalip M, Nuraje N. Preparation of Zwitterionic Sulfobetaines and Study of Their Thermal Properties and Nanostructured Self-Assembling Features. Nanomaterials. 2025;15(1). https://doi.org/10.3390/nano15010058
  15. Zhigerbayeva G, Aliyev A, Magazov Y, Kudryashov V, Adilov S, Nuraje N. Efficient template free polymerization of continuously porous hybrid conducting polymers for highly stable flexible micro pseudocapacitors. Sci Rep. 2025;15(1):9577. https://doi.org/10.1038/s41598-025-93663-5
  16. Alipuly M, Kanzhigitova D, Bexeitova A, et al. Stable conductive PANI-based hydrogels with antibacterial activity. Adv Compos Hybrid Mater. 2025;8(1). https://doi.org/10.1007/s42114-024-01110-2
  17. Askar P, Kanzhigitova D, Ospanova A, et al. 1 ppm-detectable hydrogen gas sensor based on nanostructured polyaniline. Sci Rep. 2024;14(1):26984. https://doi.org/10.1038/s41598-024-77083-5Q.F.
  18. Gillani, Q., Askar, P., Ospanova, A., Jamali, M., & Nuraje, N. (2024). Vapor-Liquid-Liquid Equilibrium of Methanol, Cyclohexane, and Hexane Systems at 0.1 MPa: Binary and Ternary Phase Behavior Analysis. Eurasian Chemico-Technological Journal, 26(4), 211–224. https://doi.org/10.18321/ectj1645
  19. Xu X, Labidi A, Luo T, et al. In situ fabrication of TiO2 nanoparticles/2D porphyrin metal–organic frameworks for enhancing the photoreduction of CO2 to CO. J Mater Chem A Mater. https://doi.org/10.1039/D5TA00809C
  20. Seliverstova E, Serikov T, Sadykova A, Ibrayev N, Nuraje N. Enhanced photocatalytic properties of TiO2/rGO nanocomposites Doped with CdS. Mater Lett. 2025;379. https://doi.org/10.1016/j.matlet.2024.137660
  21. Seliverstova E, Serikov T, Nuraje N, Ibrayev N, Sadykova A, Amze M. Plasmonic effect of metal nanoparticles on the photocatalytic properties of TiO2/rGO composite. Nanotechnology. 2024;35(32). https://doi.org/10.1088/1361-6528/ad3e02
  22. Markhabayeva, A. A., Dupre, R., Nemkayeva, R., & Nuraje, N. (2023). Synthesis of hierarchical WO3 microspheres for photoelectrochemical water splitting application. Physical Sciences and Technology, 10(3-4), 33-39. https://doi.org/10.26577/phst.2023.v10.i2.04
  23. Askar, P., Kanzhigitova, D., Tapkharov, A., Umbetova, K., Duisenbekov, S., Adilov, S., & Nuraje, N. (2025). Hydrogen sensors based on polyaniline and its hybrid materials: a mini review. Discover Nano, 20(1), 68. https://doi.org/10.1186/s11671-025-04231-9
  24. Duisebayev, T., Abdullah, M., Tezekbay, Y., Zhazitov, M., Kydyrbay, N., Nuraje, N., & Toktarbaiuly, O. (2025). Hydrothermal Synthesis and Photocatalytic Performance of Zinc Oxysulfide for Hydrogen Evolution. Engineered Science, 34, 1460. https://doi.org/10.30919/es1460
  25. Zhazitov, M., Abdullah, M., Kydyrbay, N., Adotey, E., Toktarbay, Z., Duisebayev, T., Tezekbay, Y., Nuraje, N., & Toktarbaiuly, O. (2025). Fabrication of mechanically resistant ZnO-based superhydrophobic material for enhanced concrete applications. Case Studies in Construction Materials, 22, e04655. https://doi.org/10.1016/j.cscm.2025.e04655
Book chapters
  1. Magazov, Y., Kudryashov, V., Asmatulu, D. D., & Nuraje, N. (2025). Chapter 17 - Nanotechnology safety in solar energy industry. In R. Asmatulu, W. S. Khan, & E. Asmatulu (Eds.), Nanotechnology Safety (Second Edition) (pp. 321–333). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-443-15904-6.00019-8
  2. Megbenu, H. K., Gou, J., Zhuge, J., Rakhatkyzy, M., Shaimardan, M., & Nuraje, N. (2025). Chapter 12 - Nanotechnology safety in the marine industry. In R. Asmatulu, W. S. Khan, & E. Asmatulu (Eds.), Nanotechnology Safety (Second Edition) (pp. 229–249). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-443-15904-6.00011-3
  3. Toktarbaiuly, O., Adotey, E., Kaisha, A., Kydyrbay, N., Asmatulu, R., & Nuraje, N. (2025). Chapter 16 - Nanotechnology safety in semiconductor industry. In R. Asmatulu, W. S. Khan, & E. Asmatulu (Eds.), Nanotechnology Safety (Second Edition) (pp. 311–320). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-443-15904-6.00014-9
  4. Zhazitov, M., Abdullah, M., Kydyrbay, N., Adotey, E., Toktarbay, Z., Duisebayev, T., Tezekbay, Y., Nuraje, N., & Toktarbaiuly, O. (2025). Fabrication of mechanically resistant ZnO-based superhydrophobic material for enhanced concrete applications. Case Studies in Construction Materials, 22, e04655. https://doi.org/https://doi.org/10.1016/j.cscm.2025.e04655

Information for potential users & societal impact
Who Can Benefit from This Research?

Academic Researchers
Access to novel materials, data, and collaboration for studies in energy, materials science, and environmental engineering.
Industry Partners
Opportunities to license new technologies for green hydrogen production, storage systems, and chemical synthesis.
Government and Policymakers
Scientific basis to shape national energy strategies and sustainable development roadmaps.
Agricultural Sector
Potential for on-site ammonia production using solar-powered systems, reducing reliance on imported fertilizers.
Energy Sector Stakeholders
Integration of hydrogen storage solutions with solar power and fuel cell infrastructure.

Importance to Society
Environmental Benefits

Reduction of greenhouse gas emissions by replacing fossil-fuel-based processes with solar-driven alternatives.


Contribution to global efforts in carbon neutrality and sustainable energy development.

Economic Impact
Boosts local innovation capacity and high-tech job creation in Kazakhstan.

Strengthens the foundation for future green hydrogen export markets and domestic energy independence.
Educational Outreach
Development of new academic programs and training for students in renewable energy technologies.

Public awareness campaigns to promote the role of science in tackling climate challenges.
Strategic National Relevance
Supports Kazakhstan’s Vision 2050 and carbon neutrality goal by 2060.

Positions the country as a regional leader in green energy research and application.

Latest publications